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Growth to large amplitude of a single core-resonant tearing mode in the Madison Symmetric Torus
@R. N. Dexter et al., Fusion Technol.19, 131 ~1991!# reversed-field pinch is accompanied by
braking and eventual cessation of mode rotation. There is also a concurrent deceleration of bulk
plasma rotation. The mode deceleration is shown to be well described by a time-dependent version
of a magnetohydrodynamical model@R. Fitzpatricket al., Phys. Plasmas6, 3878~1999!# in which
a braking torque originates from eddy currents induced by the rotating mode in the conducting shell
surrounding the plasma. According to the model, the electromagnetic braking torque is localized to
the plasma in the immediate vicinity of the mode’s resonant surface, but viscosity transfers the
torque to the rest of the plasma. Parametrizing the plasma viscous momentum diffusivity in terms
of the global momentum confinement time, the model is used to predict both the momentum
confinement time and the time evolution of the decelerating mode velocity. In both respects, the
model is quite consistent with experimental data. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1689353#

I. INTRODUCTION

Toroidal plasma rotation is important, and in some cases
critical, in toroidal magnetic fusion configurations such as
the tokamak and reversed-field pinch. One reason for this is
that with sufficiently fast plasma rotation, internally resonant
resistive tearing modes corotate with the plasma. However, if
the plasma rotation becomes too small, then such modes can
lock ~i.e., become stationary in the laboratory frame of ref-
erence!. Mode locking has a variety of negative conse-
quences. For example, locking in the tokamak often results
in a disruption or total loss of plasma containment. In the
reversed-field pinch, locking does not usually cause disrup-
tions, but it can give rise to enhanced plasma–wall interac-
tion and a consequent degradation of energy confinement.

In both the tokamak and reversed-field pinch~RFP!,
damping of plasma rotation and mode locking occur under a
variety of circumstances. In both configurations, mode decel-
eration and locking can occur with the growth to large am-
plitude of a single, internally resonant tearing mode.1–3 In
the late 1980s, a theory was proposed for the tokamak and
RFP that linked the deceleration and locking of a single
mode directly to the amplitude of the mode.4–7 According to
this theory, eddy currents induced in the conducting shell
surrounding the plasma exert a braking torque on the plasma

in the immediate vicinity of the mode’s resonant surface.
Since the rotation of a resonant tearing mode is due to rota-
tion of this local plasma, damping the local plasma rotation
leads directly to a decrease in the mode rotation and can
eventually cause locking. This initial theoretical work was
later augmented for the tokamak with a more detailed model
which takes into account the viscous coupling of the local
plasma to the bulk plasma, described further below.8 The
physics incorporated in this augmented model also formed
the basis of a revised model for the RFP.9

While there are differences in detail in the tokamak and
RFP models8,9 for braking due to eddy currents, the basic
physics of the models is generic. Fundamentally, the models
describe a mutual torque exerted between the plasma and
conducting shell, leading to the transfer of plasma angular
momentum to the shell. A rotating, internally resonant tear-
ing mode, amplitudebmode, surrounded by a conducting
shell induces in the shell a pattern of eddy~or image! cur-
rents with the same toroidal and poloidal mode number as
the mode. The eddy currents generate a rotating magnetic
perturbation, amplitudebeddy, whose phase lags that of the
mode. This lag is due to the finite self-inductance and resis-
tance of the shell. A sheetlike currentj sheet5(¹3beddy)/m0 is
generated in the plasma in the vicinity of the tearing mode’s
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resonant surface. Given the phase lag betweenj sheet and
bmode, a ~nonlinear! j sheet3bmode electromagnetic torque is
exerted on the local plasma which always opposes the local
plasma and mode rotation.

Assuming a tearing mode of sufficient amplitude, a mag-
netic island will be present, centered on the mode’s resonant
surface. There is little or no net plasma flow relative to this
island; i.e., the mode corotates with the plasma in the vicinity
of the mode’s resonant surface. Consider the case of a grow-
ing mode and, hence, a growing braking torque. A key as-
sumption of the model is that the local~island! plasma is
viscously coupled to the bulk plasma external to the island.
Thus, as the island plasma begins to decelerate, a countering
viscous torque develops. If the braking torque continues to
grow, substantial braking of the island plasma and island can
occur, but not without substantial deceleration of the bulk
plasma as well. The mode braking and locking cannot occur
on a time scale significantly faster than that of global viscous
diffusion. Note that as the mode rotation velocity approaches
zero, the phase lag betweenj sheetandbmode also approaches
zero, resulting in a vanishingly small torque. Hence, actual
locking cannot take place solely due to eddy currents. How-
ever, eddy currents can decelerate the mode to an extent that
other sources of braking torque can easily lock it.

There have been relatively few published experimental
tests of eddy current braking theory. Tests of the theory in its
first incarnation,4–7 without a detailed accounting of the
plasma viscous response, were made in the tokamak.1 and
RFP3 to account for the growth of a single tearing mode
accompanied by deceleration and eventual locking of the
mode. Qualitative consistency with the theory was reported.
The theory was also used successfully in a tokamak to ac-
count for so-called forbidden bands of mode rotation fre-
quency, where a mode transitions rapidly across a particular
band of frequency when the mode is decelerating or
reaccelerating.10 The modified theory for the RFP9 was also
applied to predict a mode amplitude threshold for locking in
three RFP experiments.9,11–13 Consistency with the theory
was found, in that mode amplitudes in locked plasmas were
above the predicted threshold. Most recently, an estimate of
the eddy-current torque was made to try to account for two
cases of varying mode rotation behavior in a tokamak.14 The
plasma viscous response was not included in this calculation.
Contrary to the aforementioned papers, it was concluded in
this latest work that the mode rotation behavior was not sig-
nificantly affected by the eddy-current torque.

In part due to the relative paucity of detailed compari-
sons of experiment to theory, and in light of the paper just
described, the explanation of mode deceleration and locking
in terms of the torque from eddy currents cannot be said to
be universally accepted. There has yet to be a definitive ex-
perimental test of the more recent braking theories for the
tokamak8 and RFP.9

In this paper, we report a fully quantitative, dynamical
test of eddy-current braking theory. The test is conducted
using RFP plasmas in the Madison Symmetric Torus
~MST!15 in which growth to large amplitude of a single core-
resonant tearing mode~poloidal mode numberm51) is ac-

companied by deceleration and locking of the mode. We test
the RFP theory described in Ref. 9, but we have extended
this theory to include time-dependent mode growth. Model-
ing the entire braking sequence, we find that the theory fits
the data quite well. We have also ruled out other causes of
braking and locking, such as the partially corrected magnetic
error field, which play a role in some MST plasmas.16,17

Concurrent with the deceleration and locking of the
single tearing mode in these MST plasmas, there is also a
deceleration of the bulk plasma. This mode and plasma de-
celeration occurs without any significant change to the global
equilibrium, in terms of, e.g., the plasma current and electron
density. The unchanging equilibrium, along with MST’s
simple, circular poloidal cross section and single, thick con-
ducting shell, provides an ideal test bed for the theory. The
deceleration occurs with different fuel isotopes, magnetic
equilibria, initial mode rotation velocities, and mode growth
rates, allowing tests of the model over a relatively broad
parameter range and in a relatively large number of dis-
charges. Given the assumed importance of the bulk-plasma
viscous momentum diffusivity in the deceleration, we param-
etrize the diffusivity in terms of the global momentum con-
finement time~in the absence of the braking torque!. The
model is then used to predict both the momentum confine-
ment time and the time evolution of the decelerating mode
velocity. In both respects, the model is quite consistent with
experimental data.

In Sec. II, we describe the MST device, relevant MST
plasma diagnostics, and the observed mode growth and brak-
ing. We follow in Sec. III with a discussion of the causes of
braking and locking in other MST plasmas, and we show that
these causes do not pertain here. Section IV is devoted to a
detailed discussion of the original time-independent model
for braking due to eddy currents in the RFP. In Sec. V, we
describe modifications to the model needed to make it time
dependent and show applications of the revised model to
present MST data. We summarize in Sec. VI and discuss the
implications of this work for the RFP and tokamak.

II. EXPERIMENTAL APPARATUS AND BRAKING DATA

A. MST and relevant diagnostics

The data in this paper were measured in the MST RFP.15

The MST plasma is toroidal with a circular poloidal cross
section. The plasma is surrounded by a single conducting
shell which also serves as the vacuum vessel and single-turn
toroidal field winding. The shell has a 150-cm major radius
and a 52-cm minor radius~measuring out to the plasma-
facing surface of the shell!. The plasma minor radius is lim-
ited to about 51 cm by a distribution of tiles covering 10% of
the shell surface. The shell is 5 cm thick, comprised of an
aluminum alloy~6061-T6!, and is largely uniform toroidally
and poloidally. The primary nonuniformities are portholes,
the largest of which are 11.4 cm in diameter, and two 1.3-
cm-wide electrically insulated gaps~cuts!. The so-called po-
loidal gap extends poloidally to allow poloidal flux~pro-
duced by toroidal plasma current! to enter the vessel, while
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the so-called toroidal gap extends toroidally at the inboard
midplane and allows toroidal flux to enter the vessel. Image
currents on the surface of the conducting shell arriving at one
side of the poloidal gap are able to pass to the other side by
a conductor connected across the gap. No such conductor is
connected across the toroidal gap. Image currents arriving at
the toroidal gap pass into the toroidal magnetic field circuit,
which is connected directly to the vessel.

Radial magnetic error fields occur at both gaps. In this
work, we need only be concerned with error fields that have
the same poloidal and toroidal mode numbers (m,n) as the
single large mode, since only such resonant error fields can
affect the mode’s rotation.8,17,18As discussed further below,
this large mode has (m,n)5(1,5) or ~1,6!, depending on the
magnetic equilibrium. The error field at the poloidal gap has
a fairly broadm and n spectrum, including~1,5! and ~1,6!
components. However, we show below that even a relatively
large resonant error field at the poloidal gap does not affect
the mode’s rotation. Recent measurements of the error field
at the toroidal gap indicate that the resonant components are
small.19 Hence, we assume here that this field plays no role.

The amplitudes and phase velocities of the internally
resonant tearing modes are measured with a toroidal array of
magnetic sensing coils mounted on the plasma-facing surface
of the conducting shell just beyond the plasma boundary.
Detection at the plasma boundary of all the core-resonant
m51 modes is possible given the global perturbations asso-
ciated with the modes. The sensing coil array is comprised of
32 coil pairs. One coil in each pair measures the fluctuating
poloidal field, while the other measures the fluctuating toroi-
dal field. A Fourier decomposition of each set of 32 discrete
signals provides the poloidal and toroidal magnetic fluctua-
tion amplitudes of each mode, as well as each mode’s toroi-
dal phase velocity. Toroidal rotation of CV~or C41) impurity
ions is measured with a passive Doppler spectrometer having
a tangential–toroidal view of the plasma.20 The location of
the measured velocity depends on the profile of the CV emis-
sion. For the CV data shown below, the emission is strong
across the plasma core, thereby allowing measurement of the
CV rotation in the region where the dominantm51 modes
are resonant. The poloidal velocity of the modes and plasma
in the core is small compared to the toroidal velocity. Hence,
we consider only the toroidal component of the velocity in
this paper.

B. Experimental braking data

The discharges included in this work were fueled with
either hydrogen or deuterium and have toroidal plasma cur-
rentsI f from 230 kA to 390 kA and a central line-averaged
electron density ^ne& from 0.731019m23 to 1.5
31019m23. The toroidal magnetic field reversal parameter
F[Bf(a)/^Bf& ranges from 0 to20.2, whereBf(a) is the
surface toroidal magnetic field and̂Bf& is the poloidal-
cross-section average. Most of the plasmas studied here have
F50. The related pinch parameterQ5Bu(a)/^Bf&, where
Bu(a) is the surface poloidal magnetic field, varies from
about 1.45 to 1.70, the lower value corresponding toF50
plasmas. All of the plasmas examined in this paper are re-

ferred to as standard, since their global energy confinement
time is approximately the MST standard 1 ms. We exclude
from this study recently achieved plasmas in which the con-
finement time is substantially improved.21

For theF50 andF520.2 plasmas studied in this pa-
per, we show in Fig. 1 the locations and (m,n) values of the
five lowestn, m51 modes, resonant in the plasma core. The
locations indicated are of the mode resonant surfaces. They
are labeled on plots of the safety factor profile,q(r ), which
is equal tom/n on resonant surfaces. Thesem51 modes
dominate a typical mode spectrum. One notable difference
between the twoq profiles in Fig. 1 is the value ofq(0),
which determines the toroidal mode number of the innermost
resonantm51 mode. In theF50 profile, q(0).0.2, mak-
ing the~1,5! mode innermost resonant. In theF520.2 pro-
file, q(0),0.2, making the~1,6! mode innermost resonant.
Another notable difference between these profiles is the
value ofq(a). With q(a),0 in theF520.2 profile, modes
with m50 (n51,2,3,...) are resonant in the plasma, all at the
same radius. Withq(a)50, them50 modes are resonant at
the surface of the conducting shell. The potential significance
of the m50 modes in this work is discussed below.

The plasmas of interest in this paper exhibit growth to
large amplitude of the innermost resonantm51 mode. Mode
spectra with this feature have been dubbed quasi single he-
licity ~QSH!, referring to the fact that the mode spectrum is
comprised approximately of only one mode helicity
(m,n).22–25A QSH spectrum appears in theF50 discharge
shown in Fig. 2, and it results in mode braking and locking.
The evolution of them51, n55 – 9 mode amplitudes is
shown in Fig. 2~a!. Until about 14 ms, the amplitudes are
comparable to one another, but the~1,5! mode then grows
steadily and ultimately dominates the spectrum. The

FIG. 1. Safety factor profiles reconstructed from an equilibrium model for
plasmas with~a! F50, I f5300 kA, shot~1990131033! and ~b! F520.2,
I f5385 kA, shot~1001112138!.
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roughly linear growth and eventual sudden drop of the domi-
nant mode amplitude shown here is common to all the plas-
mas in this study. In other plasmas, the dominant mode am-
plitude grows and saturates, remaining large and constant for
tens of ms, but in all cases, mode braking and locking occurs
during the mode growth phase. These peaked mode spectra
do not occur in all MST plasmas, even with the same opera-
tional parameters, and they appear at different times in plas-
mas in which they do occur.

The toroidal phase velocity of the~1,5! mode and the
toroidal flow velocity of CV ions are shown in Figs. 2~b! and
2~c!. Before the~1,5! mode grows large, it and the plasma
rotate continuously. The same is true for the otherm51
modes~not shown!. However, as the~1,5! mode amplitude
becomes large, this mode and the bulk plasma, represented
by the CV ions, slow down. CV rotation is taken as repre-
sentative of bulk plasma rotation in the core, since the CV
ions andm51 modes always rotate at similar velocities.26

Eventually, at 19 ms, the~1,5! mode, as well as the other
m51 modes, locks and remains locked until the end of the
discharge~which occurs at 47 ms in this case!. The plasma
does not cease to rotate, however, but continues on at a re-
duced speed, as is typical with mode locking in MST. Such
permanent mode locking is the typical result of QSH mode
growth and braking, as long as the mode grows to sufficient
amplitude. However, the modes and plasma do occasionally
spin up again, after the dominant mode amplitude has
dropped. There are also plasmas in which the dominant mode
amplitude drops during the mode deceleration before locking
can occur. In these cases, the modes and plasma reaccelerate.

The appearance of the QSH mode spectrum and the re-
sultant braking and locking has little effect on the global
equilibrium. This is in contrast to locking in the tokamak,
which often results in a disruption. The MST plasma does

not disrupt in the presence of such a large mode partly be-
cause the field structure in the core of a standard RFP plasma
is already stochastic, although the region within the large
mode’s island is substantially less stochastic, possibly exhib-
iting healed flux surfaces.23 To illustrate the constancy of the
plasma equilibrium in QSH plasmas, we show the toroidal
plasma current and line-averaged electron density in Figs.
1~d! and 1~e!. Parameters such asF andQ, which reflect the
shape of the magnetic field profiles,27 are also unchanging.

The deceleration and locking of them51, n55 – 9
modes in the plasma shown in Fig. 2 are shown in detail in
Fig. 3~a!. In Fig. 3~b!, we overlay the~1,5! and CV veloci-
ties. Since each tearing mode rotates with a velocity deter-
mined by the plasma flow in the vicinity of the mode’s reso-
nant surface, differing mode velocities reflect a radial
variation of the plasma flow velocity. While the radial profile
of the flow varies somewhat shot to shot~e.g., some profiles
are flatter than others!, a feature common to all plasmas in
this study is that the core-resonantm51 modes and CV ions
decelerate on the same time scale. This is sensible since the
mode resonant surfaces and CV ions overlap in space.

With the data shown thus far, we have established a clear
correlation between the growth of the QSH dominant mode
and the mode~and plasma! deceleration. When the QSH
spectrum appears, the mode phase velocity evolves as a rela-
tively simple function of the mode amplitude. In Fig. 4 we
plot the mode phase velocity versus the normalized mode
amplitude extracted from 10 to 20 ms from the data shown in
Fig. 2. The mode amplitude is normalized to the equilibrium
field strength at the plasma boundary. Henceforth, we will
refer to curves such as that shown in Fig. 4 as braking

FIG. 2. From theF50 plasma used in Fig. 1,~a! poloidal magnetic fluc-
tuation amplitude of them51, n55 mode~black line! and them51, n
56 – 9 modes~gray lines!, ~b! toroidal phase velocity of them51, n55
mode,~c! toroidal flow velocity of CV ions,~d! toroidal plasma current, and
~e! central line-averaged electron density.

FIG. 3. From theF50 plasma used in Fig. 1,~a! toroidal phase velocity of
them51, n55 – 9 modes, in order from top to bottom, and~b! the toroidal
phase velocity of them51, n55 mode and toroidal flow velocity of the CV
ions.
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curves. At low mode amplitude in Fig. 4, the velocity is
largely independent of amplitude, but as the mode amplitude
grows, a clear relation between velocity and amplitude
emerges, with the velocity steadily decreasing until locking
occurs. The braking curve is not perfectly smooth due to
both noise in the data and real variations in the mode ampli-
tude and velocity. Curves like that shown in Fig. 4 are traced
out whenever the QSH dominant mode grows to sufficient
amplitude. More braking curves are shown below.

In this section, we have shown that braking and locking
of the core-resonantm51 modes accompany the growth to
large amplitude of the innermost resonantm51 mode. We
have also demonstrated that this mode braking is accompa-
nied by deceleration of the bulk plasma. In the next section,
we begin examination of the possible causes of this mode
braking.

III. ROLE OF THE ERROR FIELD AND MODE
COUPLING

There are previously established mechanisms for mode
braking and locking in MST that could, in principle, contrib-
ute to the phenomenology described above. One mechanism
is the torque exerted by error fields. Another is the torque
exerted via nonlinear coupling to other modes resonant in the
plasma. We will show that neither mechanism plays a role
here.

A. Error field

As with the torque from eddy currents in the shell, the
torque from an error field is exerted on the plasma in the
vicinity of a tearing mode’s resonant surface and is propor-
tional to the product of the mode’s amplitude and the corre-
sponding resonant component of the error field.8,18 It has
been demonstrated in MST that a sufficiently largem51
error field applied at the poloidal gap can decelerate and lock
the m51 modes.17 Given the large amplitude to which the
QSH dominant mode grows, even a relatively small error

might induce locking or, at least, affect the shape of the
braking curve. There is a finite error field at the poloidal gap
in all the plasmas studied here.

To test for influence of the error field, we examined QSH
mode braking with anm51 error field of varying magni-
tude. The error field magnitude can be varied shot to shot.
Shot-averaged wave forms from plasmas with a QSH mode
spectrum but differing error fields are shown in Fig. 5. One
ensemble is comprised of seven shots with a large error field,
and the other is comprised of eight shots with a small error
field. The ensembles are comprised of data extracted from
each shot during the 5-ms interval leading up to locking of
the dominant mode. TheseF50 plasmas were generated on
the same day with the same plasma current and similar elec-
tron density. The~1,5! mode amplitude and the amplitude of
the m51 radial error field are shown in Figs. 5~a! and 5~b!.
The two mode growth rates are very similar, showing that the
mode growth is unaffected by the substantial difference in
error field amplitude. The product of the mode and error-field
amplitudes is shown in Fig. 5~c!, showing that there is a
large difference in the error-field torque in these plasmas.
Even with this large difference, the evolution of the~1,5!
velocity in the two cases, Fig. 5~d!, is quite similar, even
during the phase of rapid deceleration when the product of
the mode and error-field amplitudes differs by almost an or-
der of magnitude.

Not surprisingly, given the data in Fig. 5, there is no
significant difference in the braking curves for these two en-
sembles. In Fig. 6 we show two shot-averaged QSH braking

FIG. 4. From poloidal magnetic fluctuation measurements, the~1,5! toroidal
phase velocity versus the normalized mode amplitude. Data was extracted
from 10 to 20 ms from the shot shown in Fig. 2. A 250-ms smooth is applied
to the data.

FIG. 5. In the presence of large and small error fields, time variations of~a!
the poloidal magnetic fluctuation amplitude of the~1,5! mode,~b! the am-
plitude of them51 radial error field at the poloidal gap,~c! the product of
the mode amplitude and error field, and~d! the toroidal phase velocity of the
~1,5! mode. Data were recorded on 8 January 2003.
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curves, comprised of data from the same ensembles used in
Fig. 5. Not only are the shapes of these curves quite similar,
but the value of the mode amplitude at which locking occurs
is the same. The similarity of the braking curves is also ap-
parent when one compares individual shots~i.e., this similar-
ity is not an artifact of averaging!. We did record some plas-
mas with an error field much larger than that shown in Fig.
5~b!. Consistent with previous experiments,17 an error field
well over 100 G caused robust locking of them51 modes,
in most cases in the absence of a QSH spectrum. Although
the error field is unimportant within the range of error am-
plitude shown in Fig. 5, we did adjust the error field to be as
small as possible in the plasmas modeled below.

B. Mode coupling

In addition to the error field, there is also a torque that
can be exerted by other resonant tearing modes.18,28 This
torque is exerted via nonlinear coupling of three modes, one
of which is the QSH dominant mode. In contrast to the ex-
ternally imposed torque due to an error field or eddy currents
in the shell, which causes a net loss of plasma angular mo-
mentum, the torque from mode coupling results only in a
redistribution of momentuminternal to the plasma. The most
important three-wave-coupled triplet for this paper involves
modes with (m,n)5(1,nQSH), (1,nQSH11), and~0,1!. The
torque is proportional to the product of the three mode am-
plitudes and, once again, is exerted on the plasma in the
vicinity of each mode’s resonant surface. When substantial,
this mutual torque causes them51 andm50 mode phase
velocities to equilibrate. In MST plasmas, them50 modes
are either stationary in the laboratory frame or rotate in the
direction opposite them51 modes. Thus, when nonlinear
coupling is substantial, them51 modes decelerate.

Obvious evidence for this coupling and equilibration has
previously been observed only during sawtooth crashes,
when both them51 and m50 mode amplitudes become
quite large for a brief time.28 Between crashes, when mode
amplitudes are generally smaller, the coupling is very
weak.28 In this study, we exclude plasmas in which a saw-

tooth crash occurs during deceleration of the QSH dominant
mode. Between crashes in QSH plasmas, as in other standard
MST plasmas, the amplitude of the~0,1! mode is small. Thus
we expect that the three-wave torque is also small.

We demonstrate that the torque is small inF50 plasmas
by comparing braking of the~1,5! QSH mode inF50 and
F.0 plasmas. InF50 plasmas, the~0,1! mode is resonant
at the plasma boundary at the inner surface of MST’s thick
conducting shell. InF.0 plasmas,q.0 everywhere in the
plasma, excluding them50 resonant surface from the
plasma and eliminating the three-wave torque. In Fig. 7 are
data from two shot ensembles, one comprised of 11 shots
with F50 and the other comprised of 19 shots withF
510.015. These discharges all had the same plasma current,
similar electron density, and the same~small! m51 error
field. The amplitudes of the~1,5!, ~1,6!, and~0,1! modes are
compared in Figs. 7~a!–7~c!. The evolution of them51
modes is quite similar comparing the two cases. The ampli-
tude of the~0,1! mode in theF.0 case represents a baseline
or noise level since the mode is not resonant in the plasma.
The ~0,1! amplitude in theF50 plasmas is just slightly
above the baseline. The product of the three mode ampli-
tudes is compared in Fig. 7~d!. Except for a brief time, the
product in theF50 ensemble differs very little from that in
the F.0 ensemble, the latter reflecting a baseline in the
triple product and three-wave torque. The evolution of the
~1,5! velocity in the two cases is quite similar, Fig. 7~e!,
although the initial velocity differs due to the slightly differ-
ent equilibria.

The two shot-averaged braking curves for these data are

FIG. 6. Shot-averaged braking curves for the~1,5! mode in the presence of
large and small error fields. Curves were compiled from the same plasmas as
those used in Fig. 5.

FIG. 7. InF.0 andF50 plasmas, time variations of the poloidal magnetic
fluctuation amplitude of the~a! ~1,5! mode and~b! ~1,6! mode, ~c! the
toroidal magnetic fluctuation amplitude of the~0,1! mode,~d! the product of
the ~1,5!, ~1,6!, and ~0,1! mode amplitudes, and~e! the toroidal phase ve-
locity of the ~1,5! mode. Data were recorded on 30 March 2001 and 3 April
2001.
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shown in Fig. 8. There is an offset between the two curves
that arises due to differences in both the phase velocities and
mode amplitudes. The difference in phase velocities origi-
nates before braking begins. Although the offset in the curves
exists all the way to locking, the shapes of the braking curves
are quite similar~i.e., the rate of deceleration is quite simi-
lar!. The similarity of the mode amplitude triple products and
the braking curves allows one to conclude that the three-
wave torque is small during braking inF50 plasmas.

IV. TIME-INDEPENDENT MODELING

Having ruled out other, previously established causes of
braking and locking in MST to explain the braking shown in
Sec. II, we turn to the torque exerted by eddy currents flow-
ing in the conducting shell. An RFP-specific model for this
effect was described in Ref. 9. In this section, we first
descibe the model, which is time independent in that it as-
sumes a mode amplitude—and thus an eddy-current
torque—that evolves on a time scale much, much slower
than that of the mode deceleration. Most of the equations
shown in this section are taken directly from Ref. 9. In de-
scribing the braking curve predicted by this model for MST,
we note a significant correction to the curve. The corrected
curve predicts braking due to eddy currents at a substantially
smaller mode amplitude. In Sec. V, we describe the time-
dependent extension to the model, made necessary by the
violation of the time-independent assumption in the plasmas
studied here. We then show applications of the time-
dependent model to experimental data and discuss the degree
to which the model fits the data.

A. Geometry and equilibrium

The model assumes large aspect ratio and zerobp ~the
volume-integrated plasma pressure normalized to the poloi-
dal magnetic field pressure at the plasma boundary!. Hence,
the equilibrium is well approximated as a periodic cylinder,
and cylindrical polar coordinates (r ,u,z) are adopted. The
major and minor radii of the cylindrical model plasma areR0

anda. A simulated toroidal angle is defined asf5z/R0 . The

system is assumed to be periodic in thez direction, with
periodicity length 2pR0 . MST’s conducting shell is assumed
to be uniform in the axial and azimuthal~toroidal and poloi-
dal! directions. The fact that the actual shell has portholes
and two gaps should not significantly affect the results, since
the induction of eddy currents does not require a completely
continuous conductor, as noted recently in a tokamak with a
segmented shell.29

Internal magnetic field profiles are modeled according to
the standard, well-testeda –u0 equilibrium model,27 accord-
ing to which

¹3B5s~r !B, ~1!

where

s5S 2u0

a D F12S r

aD aG , ~2!

andu0 anda are positive constants. The experimental inputs
to this equilibrium model are the reversal and pinch param-
eters,F andQ, measured at the plasma boundary.

B. Perturbed magnetic field

The model assumes only one unstable core-resonantm
51 tearing mode. The magnetic perturbation associated with
the single (m,n) mode is

b~r !5b~r !ei ~mu2nf!, ~3!

where

br
m,n5

ic

r
, ~4!

bu
m,n52

mc8

m21n2e2
1

nesc

m21n2e2
, ~5!

bf
m,n5

nec8

m21n2e2
1

msc

m21n2e2
, ~6!

e(r )5r /R0 , and the prime denotesd/dr.
The linearized magnetic flux functionc(r )5cm,n(r )

satisfies Newcomb’s equation30

d

dr F f
dc

dr G2gc50, ~7!

where

f ~r !5
r

m21n2e2
, ~8!

g~r !5
1

r
1

r ~neBu1mBf!

~m21n2e2!~mBu2neBf!

ds

dr

1
2mnes

~m21n2e2!2
2

rs2

m21n2e2
. ~9!

Equation~7! is singular at the tearing mode’s resonant sur-
face, located at minor radiusr s , which satisfies

mBu~r s!2ne~r s!Bf~r s!50. ~10!

FIG. 8. Shot-averaged braking curves for the~1,5! mode inF.0 andF
50 plasmas. Curves were compiled from the same plasmas as those used in
Fig. 7.
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In the vacuum region~where s50! surrounding the
plasma, the most general solution to Newcomb’s equation
takes the form

c5Aim~ne!1Bkm~ne!, ~11!

whereA andB are arbitrary constants, and

i m~ne!5uneuI m11~ uneu!1mIm~ uneu!, ~12!

km~ne!52uneuKm11~ uneu!1mKm~ uneu!. ~13!

Here, I m and Km represent standard modified Bessel func-
tions.

In this model, the tearing mode is purely a current-driven
instability. The destabilizing effect of the experimentally fi-
nite plasma pressure is explicitly neglected. This is justified
by the fairly flat pressure profile in the core of standard MST
plasmas and the relatively small value ofbp;7%. Under
these conditions, the contribution of pressure to core-
resonant tearing instability is small.31

C. Standard tearing eigenfunctions

Let cs(r ,d) represent the standard normalized tearing
eigenfunction calculated assuming a perfectly conducting
shell at minor radiusd. In other words,cs(r ,d) is a real
solution to Newcomb’s equation~7! which is well behaved
as r→0 and satisfies

cs~r s ,d!51, ~14!

cs~r>d,d!50. ~15!

There are gradient discontinuities incs(r ,d) at r 5r s and r
5d. The quantity

E~d!5F r
dcs~r ,d!

dr G
r s2

r s1

~16!

is the standard tearing stability index,32 calculated assuming
a perfectly conducting shell at minor radiusd.

D. Modified tearing eigenfunctions

Now assume a system with a finite-conductivity shell at
minor radiusb and a perfectly conducting shell at minor
radiusc, with b,c. The finite-conductivity shell imposes a
modification on the standard tearing eigenfunction. The most
general tearing eigenfunction is now written

c~r !5Cscs~r ,b!1Cbcb~r ,b,c!, ~17!

whereCs andCb are complex parameters which determine
the amplitude and phase of the tearing perturbation at the
rational surface and finite-conductivity shell, respectively.
The normalized eigenfunctioncb(r ,b,c) is a real solution to
Newcomb’s equation which is well behaved asr→0 and
satisfies

cb~r s ,b,c!50, ~18!

cb~b,b,c!51, ~19!

cb~c,b,c!50. ~20!

It is nonzero only in the radial ranger s,r ,c, and it pos-
sesses gradient discontinuities atr 5r s , r 5b, and r 5c.
This eigenfunction parametrizes the interaction between the
tearing mode and eddy currents induced in the finite-
conductivity shell, in the presence of the perfectly conduct-
ing shell.

E. Modified tearing dispersion relation

In the presence of the two shells, the dispersion relation
for the tearing mode takes the form

DCs5E~b!Cs1EsbCb , ~21!

DCb52
EsbEbs

E~c!2E~b!
Cb1EbsCs , ~22!

where

DCs5F r
dc

dr G
r s2

r s1

~23!

is a complex parameter which determines the amplitude and
phase of the eddy currents induced in the vicinity of the
tearing mode’s resonant surface, and

DCb5F r
dc

dr G
b2

b1

~24!

is a complex parameter which determines the amplitude and
phase of the eddy currents induced in the finite-conductivity
shell. Furthermore,

Esb5F r
dcb~r ,b,c!

dr G
r s1

~25!

and

Ebs52F r
dcs~r ,b!

dr G
b2

~26!

are both real parameters.
From Newcomb’s equation~7! one can demonstrate that

~m21n2eb
2!Esb5~m21n2es

2!Ebs , ~27!

whereeb5b/R0 and es5r s /R0 . One can also demonstrate
that

cb~r ,b,c!5
Esb

E~c!2E~b!
@cs~r ,c!2cs~r ,b!#. ~28!

In the vacuum region outside the plasma,

cs~r ,b!5H cs~a,b!
km~neb!i m~ne!2km~ne!i m~neb!

km~neb!i m~nea!2km~nea!i m~neb!
, a<r<b,

0, r .b,

~29!
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whereea5a/R0 . It follows from Eqs.~26! and ~27! that

Ebs5
cs~a,b!~m21n2eb

2!

km~neb!i m~nea!2km~nea!i m~neb!
, ~30!

Esb5
cs~a,b!~m21n2es

2!

km~neb!i m~nea!2km~nea!i m~neb!
. ~31!

Thus, all of the real parameters appearing in the modified
tearing dispersion relation~21! and ~22! @i.e., E(b), E(c),
Ebs , andEsb] can be calculated knowing the standard tear-
ing eigenfunctioncs(r ,d).

F. Shell physics

Given a shell with radiusb, radial thicknessdb , and
electrical conductivitysb , the shell time constant is defined

tb5m0sbdbb. ~32!

The conducting shell in MST is sufficiently thick that the
rotating tearing perturbation amplitude is zero outside the
shell ~at r .b1db). The shell provides very strong shield-
ing. Given this, one can write a dispersion relation for the
vacuum vessel,

DCb5S in Vstb

b

db
D 1/2

Cb , ~33!

relating the amplitude and phase of the eddy currents in-
duced in the finite-conductivity shell to the amplitude and
phase of the tearing perturbation at the same location. Intro-
duced in this expression isVs , the toroidal angular velocity
of the plasma at the tearing mode resonant surface. It is
assumed that the tearing mode and plasma corotate toroidally
at the mode’s resonant surface. This is commonly referred to
as theno-slip constraint. The plasma’s toroidal angular ve-
locity profile is represented byV(r ).

From Eqs.~21!, ~22!, and ~33!, one can also derive the
dispersion relation at the resonant surface,

DCs'e2 ip/4
EsbEbs

~nVstbb/db!1/2
Cs1E~b!Cs , ~34!

relating the amplitude and phase of the eddy currents in-
duced in the vicinity of the mode’s resonant surface to the
amplitude and phase of the tearing perturbation at the same
location.

G. Electromagnetic torque

This braking model includes both the electromagnetic
braking torque exerted between the finite-conductivity shell
and local plasma in the vicinity of the mode’s resonant sur-
face, and the viscous restoring torque exerted between the
local plasma and exterior bulk plasma. The toroidal electro-
magnetic torque acting in the vicinity of the resonant surface
due to eddy currents flowing in the conducting shell is given
by

dTEM5
2p2R0

m0

n

m21n2es
2

Im$DCs~Cs!* % ~35!

or

dTEM'2
p2R0A2

m0

nuCsu2

m21n2es
2

EsbEbs

~nVstbb/db!1/2
. ~36!

In general, the electromagnetic torque has a dependence
on the phase lagw at the mode resonant surface between the
tearing perturbation and the perturbation induced by the eddy
currents flowing in the shell~or, equivalently, the phase lag
at the shell between the tearing perturbation and induced
eddy currents!. This dependence is sinw, meaning that, all
else being equal, the electromagnetic torque is largest for a
phase lag ofp/2 and smallest~zero! for a phase lag of 0. This
phase lag depends on the mode angular velocity~rotation
frequency!.

To understand the origin of the phase lag and its depen-
dence on angular velocity, consider the shell to be a driven
L/R circuit characterized by

L
dI

dt
1RI5V0eivt, ~37!

where I is the eddy current induced in the shell,V0 is the
mode amplitude, andv is the mode rotation frequency. In
steady state~with I and V0 oscillating at the same fre-
quency!,

I 5
V0 /R

11 ivL/R
. ~38!

The phase betweenV0 and I is

w5tan21F2vL

R G5tan21F 2v

~R/L !G , ~39!

andL/R is the shell~circuit! time constant. Hence,

w→H p/2, v@R/L,

0, v!R/L.
~40!

In the time-independent modeling described in this sec-
tion, the phase lag is approximated to be a constantp/4,
independent of mode velocity. In the time-dependent model-
ing described in the next section, the full variation of the
phase lag with mode velocity is included.

H. Viscous torque

The steady-state change in the plasma toroidal angular
velocity induced bydTEM is written

DV~r !5DVsH E
r

a dr

mr Y E
r s

a dr

mr
, r s<r<a,

1, r ,r s ,

~41!

wherem(r ) is the plasma perpendicular viscosity profile and

DVs5Vs2Vs
~0! . ~42!

Here,Vs
(0) is the value ofVs in the absence of eddy currents

flowing in the shell. It is sometimes referred to as the ‘‘natu-
ral’’ angular velocity. The viscous restoring torque acting in
the vicinity of the resonant surface is written
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dTVS54p2R0F rmR0
2 dDV

dr G
r s2

r s1

. ~43!

It follows from Eqs.~41! and ~42! that

dTVS54p2R0
3@Vs

~0!2Vs#Y E
r s

a dr

mr
. ~44!

I. Torque balance

In this time-independent~steady-state! model, the elec-
tromagnetic and viscous restoring torques are exactly
balanced—i.e.,

dTEM1dTVS50. ~45!

Hence, from Eqs.~36! and ~44!, one can write

A27

2 S Vs

Vs
~0!D 1/2S 12

Vs

Vs
~0!D 5S bs

L9B0
D 2

, ~46!

where

bs5
uCsu
r s

~47!

is the perturbed radial magnetic field strength at the mode’s
resonant surface due to the tearing perturbation,

L95F4A2

A27

tH
2 ~nVs

~0!!3/2~tbb/db!1/2

tV

m21n2es
2

n2es
2

3
1

EsbEbs
Y E

r s

a m~0!

m~r !

dr

r G 1/2

, ~48!

and B0 is the equilibrium magnetic field strength. In Eq.
~48!,

tH5
aAm0r0

B0
~49!

is the typical hydromagnetic time scale,

tV5
a2r0

m~0!
~50!

is the typical viscous diffusion time scale, andr0 is the cen-
tral plasma mass density. Equation~46! is used to generate
theoretical braking curves.

J. Estimate of the plasma viscosity

To generate a theoretical braking curve, one needs an
estimate of the plasma viscosity profile. Suppose that the
viscosity profile takes the form

m~r !5H `, r ,r c ,

mc , r c<r<a.
~51!

In other words, there is zero momentum confinement in the
stochastic RFP plasma core,r ,r c , but finite momentum
confinement outside this region. Suppose further that the in-
trinsic plasma rotation at the edge is negligibly small
@V (0)(a)'0# and that all of the toroidal momentum input to

the plasma occurs in the core. The model does not specify—
nor does it depend on—the source~s! of viscosity or momen-
tum. Thus, one derives

V~0!~r !5Vc
~0!H 1, r ,r c ,

ln~r /a!/ ln~r c /a!, r c<r<a.
~52!

The plasma rotation is constant in the plasma core and highly
sheared in the outer region.

The viscous diffusion time scale~50! can be redefined

tV5
a2r0

mc
, ~53!

reflecting the fact that the~finite! rate of viscous momentum
diffusion out of the plasma is determined by the finite vis-
cosity in the outer region of the plasma. Suppose that the
plasma radial density profile is uniform. It follows that the
global momentum confinement timetM , defined as the ratio
of the net plasma toroidal angular momentum to the toroidal
angular momentum injection rate, is related totV via

tV52tM

a3@dV~0!~a!/dr#

*0
aV~0!rdr

. ~54!

Hence,

tV5
4tM

12~r c /a!2
. ~55!

Assume now that

tM'tE , ~56!

wheretE is the global energy confinement time~the validity
of this assumption is discussed in the next section!. It then
follows that

tVE
r s

a m~0!

m~a!

dr

r
→ktE ~57!

in Eq. ~48!, where

k5
4 ln~a/r c!

12~r c /a!2
. ~58!

Hence, the viscous momentum diffusivity is parametrized in
terms of the global momentum confinement time~in the ab-
sence of an electromagnetic torque!, and this is in turn taken
equal to the global energy confinement time.

K. Time-independent braking curve for MST

MST is comprised of a single, finite-conductivity shell.
Given the lack, of course, of a perfectly conducting shell, the
minor radiusc of the perfectly conducting shell in the pre-
ceding analysis takes the valuè. In other words, the per-
fectly conducting shell is now located infinitely far from the
plasma.

A sample braking curve is shown in Ref. 9 for the~1,6!
tearing mode, initially rotating in anI f5340 kA MST hy-
drogen plasma. The braking curve is generated from Eq.~46!
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in the present paper. Some of the parameters needed for Eq.
~46! are listed in Table I. Based on these parameters, one
calculates

tH5
aAm0mpne0

B0
55.531027 s ~59!

and

tb5m0sbdbb50.82 s. ~60!

Taking Vf
(0) , the initial plasma flow velocity in the vicinity

of the mode’s resonant surface, to be 10 km/s, one calculates

nVs
~0!5

nVf
~0!

R0
543104 rad/s. ~61!

This is the angular velocity of the~1,6! mode in the limit of
very low mode amplitude where the braking torque due to
eddy currents is negligible.

For the chosen equilibrium~see Table I!, Newcomb’s
equation providesE(b)51.038, E(c)517.59, Ebs55.826,
and Esb51.614. Taking the radius of the stochastic plasma
core to ber c50.7a, one calculates

k5
4 ln~a/r c!

12~r c /a!2
52.8. ~62!

Using the above equations and parameter values allows one
to calculate

L95F 4A2

kA27

tH
2 ~nVs

~0!!3/2~tbb/db!1/2

tE

m21n2es
2

n2es
2

3
1

EsbEbs
G 1/2

50.03. ~63!

To allow easier comparison with experimental data,bs ,
the perturbed radial magnetic field strength at the mode’s
resonant surface due to the tearing perturbation, is related to
the amplitudes of the poloidal and toroidal field perturbations
at the location of MST’s magnetic sensing coils via

bub5
m

m21n2eb
2

EbsbsS r s

b D , ~64!

bfb5
neb

m21n2eb
2

EbsbsS r s

b D . ~65!

Note that the factor (r s /b) ~'1/3 for MST! in both of these
equations has been added as a correction to what was origi-
nally published in Eqs.~101! and ~102! in Ref. 9.

Two braking curves generated from Eq.~46! are shown
in Fig. 9. The curve labeled ‘‘Original’’ was generated using
Eqs.~64! and~65! without the (r s /b) correction factor. This
is the curve that appears for MST in Fig. 5 of Ref. 9. The
curve labeled ‘‘Corrected’’ in Fig. 9 incorporates the correc-
tion factor. Both curves represent a series of equilibria in
which the electromagnetic and viscous torques are exactly
balanced. One feature of these time-independent braking
curves is the discontinuity that occurs when the mode veloc-
ity reaches about 1/3 of its initial value. Across this transition
point, the braking torque due to eddy currents overwhelms
the viscous restoring torque, and the mode’s velocity is pre-
dicted to drop to a very low value.

Given the addition of the correction factor to Eqs.~64!
and~65!, the mode amplitude at which the transition to very
slow rotation is predicted now drops from about 3% to about
1%, implying potentially wider applicability of this braking
mechanism to MST plasmas. The same factor ofr s /b applies
to Eqs.~115! and~116! in Ref. 9, applicable to the Reversed
Field eXperiment~RFX! RFP that was in operation until
1999,33 meaning that significant braking is also predicted at a
lower mode amplitude in that device.

V. TIME-DEPENDENT MODELING

To model the braking data shown in Sec. II in terms of
the torque exerted by eddy currents, we must add time de-
pendence to the model. This is due to the fact that the mode
amplitude ~and the induced eddy currents! grows on the

FIG. 9. Time-independent braking curves for MST based on Eq.~97! in Ref.
9. The curve labeled ‘‘Original’’ is the same curve found in Fig. 5 in that
paper. The curve labeled ‘‘Corrected’’ is for the same plasma, but with a
correction described in the present paper. Dots indicate the point on each
curve across which the model predicts a discontinuous drop to very slow
rotation.

TABLE I. Some of the parameters needed in Eq.~46! for generation of the
time-independent braking curve for MST, Fig. 9.

Parameter Value

I f (kA) 340
B0[Bu(a)5m0I f/2pa (T) 0.13
F 20.2
Q 1.59
a 3.0
Q0 1.71
R0 (m) 1.5
a (m) 0.51
b (m) 0.52
db (m) 0.05
ea5a/R0 0.34
r S (m) 0.17
eS5r S /R0 0.11
1/sb (V m) 4.031028

ne0 (1019 m23) 1.0
tM5tE (ms) 1.0
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same time scale as the mode deceleration. The time-
dependent model is based on the same physics as the time-
independent model.9 In this section, we describe the changes
to the model necessitated by the addition of time depen-
dence. We will also describe a few additional differences in
the modeling not related to time dependence but pertinent to
the MST plasmas studied in this paper. We then describe
modeling for different MST plasmas and discuss the degree
to which the model agrees with the experimental data. We
will also illustrate why the addition of time dependence in
the model is so important. We close this section with a brief
discussion of mode locking.

A. Equilibrium and perturbed magnetic fields

Although time-dependent mode growth and braking are
now accounted for, the plasma equilibrium is taken to be
fixed during the mode deceleration. This is justified due to
the constancy ofF andQ during the braking and due to data
like that in Figs. 2~d! and 2~e!. For each plasma modeled, the
magnetic field profiles and, thus, the location of the QSH
dominant mode’s resonant surface are calculated 1 ms before
locking occurs. We continue to use thea –Q0 model, but
with a modification. Attempts to reconstruct, e.g.,F50
plasma equilibria assuming zerobp failed in that the~1,5!
mode was predicted to be barely nonresonant@q(0)
50.19#. Hence, we reconstructed the plasma equilibrium us-
ing a more realistic finite-b version of thea –Q0 model. We
take bp57% for theF50 plasmas andbp56.5% for the
F520.2 plasmas.21,34Separate internal measurements of the
magnetic field profiles in standard MST plasmas have shown
good agreement with those reconstructed with this model.

We continue the assumption of only one unstablem51
tearing mode. This is approximately justified for the QSH
plasmas described here. The dominantm51 mode in the
QSH spectrum is substantially larger than the otherm51
modes@see Fig. 2~a!#. The otherm51 mode amplitudes are
finite, meaning that these modes induce eddy currents in the
conducting shell, but their amplitudes~,1% of the equilib-
rium field! are such that the corresponding braking torque is
quite small. This is supported by the data in Fig. 4, which
shows ~for a single mode! no apparent relation between
mode amplitude and velocity for amplitudes,1%.

B. Time-dependent shell response

Given that db!b for MST’s conducting shell, Ohm’s
law yields within the shell

m0sb

]c

]t
5

]2c

]r 2
. ~66!

The boundary conditions onc(r ,t) are

c~b,t !5Cb~ t !, ~67!

S ] ln c

] ln r D
r 5b1db

5z, ~68!

where Cb(t) is the perturbed magnetic flux at the inner
boundary of the shell, and

z5Fd ln km~ne!

d ln~r ! G
r 5b

. ~69!

The ~complex! shell response functionis defined as

G~ t !52S ] ln c

] ln r D
r 5b

1z. ~70!

Equations~66!–~68! can be solved to give

G~ t !5Agtb

d
tanh~Agtbd!2

1

d (
j 51,̀

f j , ~71!

whereg(t)5d ln Cb /dt is the ~complex! growth rate of the
shell flux,d5db /b, and

d f j

dt
52~l j1g! f j1s j

dg

dt
, ~72!

with

l j5
~ j 21/2!2p2

tbd
, ~73!

s j5
2l j

~g1l j !
2

. ~74!

The above expressions were derived given that the condi-
tions ugutb@d and l jtb@d are both satisfied in MST. The
first term on the right-hand side of Eq.~71! represents the
steady-stateresponse of the shell, whereas the second term
represents thetransientresponse.

C. Time-dependent electromagnetic torque

The electromagnetic torque induced by the rotating
mode now varies in time due both to the growing mode
amplitude and to the decelerating mode velocity. The toroi-
dal electromagnetic torque acting in the vicinity of the mode
resonant surface takes the form

T~ t !52
2p2R0

m0

n

m21n2es
2

EsbEbsuCsu2
Im@G~ t !#

uG~ t !1ku2
,

~75!

where

k5
EsbEbs

E~c!2E~b!
. ~76!

Let

Cs5uCsueiws, ~77!

wherews is the helical phase of the tearing mode. It follows
that

g~ t !5
d lnuCsu

dt
1 i

dws

dt
2

dG~ t !/dt

G~ t !1k
. ~78!

Finally, the no-slip constraint at the resonant surface yields

dws~ t !

dt
5nV~r s ,t !. ~79!
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D. Time-dependent viscous response

The viscosity in the present model is now taken to be
finite, and constant, across the entire plasma. This is consis-
tent with measurements made in MST.35 The viscosity is also
taken to be constant in time, but the viscous torque evolves
with the changing plasma rotation. The plasma momentum
diffusivity is once again parametrized in terms of the global
momentum confinement time~in the absence of braking
torque!.

The plasma toroidal equation of motion is written

rr
]DV

]t
2m

]

]r S r
]DV

]r D5
T~ t !

4p2R0
3

d~r 2r s!, ~80!

where DV5V2V (0), V (0)(r ) is the unperturbed toroidal
rotation profile, andm is the viscosity. The plasma densityr
is once again assumed to be uniform. The boundary condi-
tions associated with the above equation are

]DV~0,t !

]r
5DV~a,t !50. ~81!

Subject to these boundary conditions, Eq.~80! can be solved
to give

V~r s ,t !5V~0!~r s!1 (
n51,̀

gn~ t !, ~82!

where

dgn

dt
52bngn1

T~ t !@un~r s!#
2

4p2R0
3a2r

. ~83!

Here,

un~r !5A2
J0~ j 0,nr /a!

J1~ j 0,n!
~84!

and

bn5
m

ra2
j 0,n
2 . ~85!

Note that j 0,n is the nth zero of theJ0 Bessel function and
that the momentum confinement time is writtentM51/b1 .

Equations~71!, ~72!, ~75!, ~78!, ~79!, ~82!, and~83! form
a closed set. They can be used to determine the temporal
variation of the tearing mode phase velocity,dws /dt, given
the temporal variation of the mode amplitude,uCsu. Note
that the amplitudes of the perturbed poloidal and toroidal
fields at the location of MST’s magnetic sensing coils are

ubu~ t !u5
m

m21n2eb
2

Esb

b

uG2zu
uG1ku

uCsu, ~86!

ubf~ t !u5
neb

m21n2eb
2

Esb

b

uG2zu
uG1ku

uCsu. ~87!

E. Time-dependent braking curves

Experimental and ~time-dependent! model braking
curves for three different plasma types are shown in Fig. 10.

The parameters fed into the model to generate the theoretical
curves are essentially the same as those described for Eq.
~46!, from which the time-independent braking curve was
generated. Two differences are that the time-dependent mode
amplitude,bs}bu, and the initial mode velocity,Vs

(0)}nf
(0),

are now taken directly from experimental measurements. The
growth rate ofbu varies from plasma to plasma, but in all
cases studied here, the mode growth is approximately linear
versus time (bu;t). Sincebu never reaches zero in the ex-
periment, each experimental braking curve is extrapolated to
zero mode amplitude to determinenf

(0) . The uncertainty in-
troduced by this extrapolation is minimal.

A third difference between the present modeling and that
described in the previous section is that the value oftn

}tM appearing in Eq.~48! is no longer assumed. Instead, the
model is used topredict tM . The momentum confinement
time is the single adjustable parameter in the model, and it is
adjusted such that the theoretical and experimental curves
coincide at locking (nf50). Model-required values oftM

are shown in Fig. 10 for each plasma. With the fit value of
tM , as well as all the other input parameters, the model is
used to generate the time-dependent mode velocity over the
entire period of deceleration. The model-calculated mode ve-
locity is then combined with the measured mode amplitude
to produce each theoretical braking curve.

The theoretical curves in Fig. 10 are a good match to the
experimental curves. As implied above, this isnot a result of
simple curve fitting. Each model curve could, in principle,
deviate substantially from the experimental curves. This is
one indication that the model is performing well in these
plasmas—i.e., that the mode braking is well described by
this model. The proximity oftM to experimental values is
the other criterion by which we gauge the model’s success.
We show in the next subsection that the model-required val-

FIG. 10. Experimental and model braking curves for three different plasma
types. Indicated in each figure are the fuel isotope, toroidal magnetic field
reversal parameter, and toroidal plasma current. Also indicated are the
model-predicted values of the global momentum confinement time. From
top to bottom, these data are from shots~1990131033, 1990201021, and
1001112138!.
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ues oftM are quite consistent with what has been measured
experimentally.

F. Comparison of modeled and experimental
momentum confinement times

In Table II is a summary of experimental and model data
from all the plasmas included in this study. The data shown
in Fig. 10 are from the three cases in Table II. The plasmas
are grouped by fuel isotope and toroidal field reversal param-
eter. Although there are important parametric differences be-
tween the three cases, the shot-averaged model predictions
for tM , shown in the bottom row, are all of the order of 1–2
ms. Furthermore, as reflected by the standard deviations of
the values oftM , the shot-to-shot variation in the modeled
tM within each ensemble is not large. Slightly later in this
section, we shall compare these model predictions to what is
measured and expected experimentally.

The modeled value oftM is well constrained~precisely
determined! in each plasma. We demonstrate this in Fig. 11
by taking the experimental braking curve from Fig. 10~a! and
varying tM to produce various theoretical braking curves.

We start withtM51.0 ms, the best fit to the experimental
data, and vary it by factors of 2 and 10 (tM50.1, 0.5, 2.0,
and 10.0 ms!. All other parameters are held constant. Clearly,
even a factor-of-2 variation intM causes a substantial dis-
agreement between the experimental and model braking
curves.

We have not measuredtM in the specific plasmas stud-
ied in this paper, but based on a measurement made in other
MST plasmas and some fairly simple arguments, we con-
clude that the model predictions fortM are quite consistent
with experimental expectations. The only direct measure-
ment of momentum confinement in MST was reported in
Ref. 35, where the deceleration of the plasma was recorded
following acceleration with an insertable biased probe. This
experiment was carried out in standard-confinement21,34 hy-
drogen plasmas withI f5200 kA, F520.15, and ^ne&
50.831019m23. Based on the data in that paper, one esti-
matestM>1.0– 1.5 ms.

Over a broad range of plasma parameters, the energy
confinement time in MST standard-confinement plasmas
falls in the narrow range of about 1.0–2.0 ms.21,34 Hence,
tM;tE in the plasmas studied in Ref. 35. Given the small
variation intE in standard MST plasmas, it is reasonable to
assume that variations intM will also be fairly small. Such a
relation betweentE andtM is observed in tokamaks, where
measurements of both quantities are more extensive.36

Hence, we conclude that the values oftM shown in Table II
are all consistent with experimental values.

One other point of comparison adds to our confidence in
the modeling. Compare the predicted values oftM in cases I
and II in Table II. The primary difference in the background
plasma in these two cases is the fuel isotope. The fact thattM

is predicted to be larger with deuterium is consistent with
experimental expectation. The neutral density in the MST
plasma core is relatively large,.0.1% of the electron
density,37 and charge exchange of plasma ions with these
neutral particles is a significant source of momentum loss.
Recent measurements indicate that the central neutral density
is smaller in deuterium plasmas than in hydrogen plasmas.38

Thus,tM is expected to be larger in deuterium plasmas, con-
sistent with the model prediction.

G. Impact of time-dependent mode growth

To describe the impact of the time-dependent mode
growth on the mode braking~i.e., the importance of time
dependence in the model!, we compare in Fig. 12 four brak-
ing curves associated with four different mode growth rates,
all linear versus time. The modeled growth rates are varia-
tions of that measured in the plasma used in Fig. 10~a!. Hold-
ing constant the modeled value oftM ~1.0 ms! in that
plasma, we varied the mode growth rate to gauge the pre-
dicted impact on the braking curve. The rightmost curve in
Fig. 10 corresponds to the experimentally measured growth
rate. This is the same as the model curve shown in Fig. 10~a!.
Working from right to left, the three remaining curves corre-
spond to mode growth rates that are factors of 10, 100, and
1000 times smaller than the original, experimental rate.

There are two important differences between these four

FIG. 11. For the equilibrium and experimental braking curve from the
plasma in Fig. 10~a!, various modeled braking curves based on different
assumed momentum confinement times. The experimental data and original
model curve from Fig. 10~a! are included.

TABLE II. For three ensembles of different plasma type, number of shots in
the ensemble, plasma fuel, toroidal magnetic field reversal parameter, toroi-
dal plasma current, central line-averaged electron density, normalized
growth rate of the QSH mode, normalized mode amplitude at which locking
occurs, and the modeled momentum confinement time. All data after the first
three rows are ensemble averaged. The reversal parameter is held constant in
each case.

Case I Case II Case III

Number of shots 6 8 4
Fuel isotope H2 D2 D2

F 0.0 0.0 20.2
I f (kA) 265623 284614 38467
^ne& (1019 m23) 1.260.3 0.960.1 1.060.1
Growth rate~%/ms! 0.860.2 0.660.1 0.360.1
bu /B(a) at locking ~%! 3.360.3 3.260.3 1.960.2
tM (ms) 1.360.3 1.960.4 2.160.1
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curves. One difference is in the value of the mode amplitude
at which locking is predicted. The slowest growth rate cor-
responds to the smallest mode amplitude at locking. The
other difference lies in the shape of the curves. In the
slowest-growth curve, one can discern an almost discontinu-
ous drop to zero velocity when the velocity reaches,1/3 of
its initial value. This is similar to what was shown in Fig. 9
for the time-independent model, thus verifying the behavior
of the time-dependent model in the limit of very slow mode
growth. In contrast to the slowest-growth case, the fastest-
growth ~experimental! case exhibits no discontinuity. The
mode velocity decreases smoothly to zero. This is, of course,
what is observed experimentally.

Both of these differences in the predicted braking curves
can be explained by comparison of the time scales for mode
growth and momentum diffusion. The momentum diffusion
time scale;tM51.0 ms, and this is the lower bound on the
time scale for the mode to decelerate. The fastest-mode-
growth time scaletgrowth5@(1/bu)(dbu /dt)#2151.5 ms.
For the slowest-growing mode,tgrowth51500 ms.

Consider first the deceleration of the slowest growing
mode. Like the time-independent case described earlier, the
braking curve for this case can be approximated as a series of
torque-balanced equilibria. As the mode amplitude increases,
the mode and plasma have a long time, relative totM , to
adjust such that the braking and viscous torques come into
balance. Eventually, the braking torque becomes large
enough that the viscous torque can no longer sustain rotation,
and a transition to very slow rotation occurs on a time scale
tM . During this relatively fast transition in velocity, the
slowly growing mode amplitude changes very little, resulting
in an approximate vertical discontinuity in the braking curve.

Now consider the fastest-growing mode. There is also a
transition point in this case, where the braking torque over-
powers the viscous torque, but the deceleration to very slow
rotation occurs on the sametM time scale. So while this
transition is occurring, the mode amplitude has significant
time to grow further. This results in the smooth~not discon-

tinuous! drop to very low velocity in the braking curve and
accounts for the fact that the mode amplitude at locking is
larger than in the slowly growing case.

H. Mode locking

While eddy currents in the shell can significantly retard
the QSH dominant mode’s rotation, they are unable to actu-
ally cause locking. The reason is that, again, the braking
torque from the eddy currents approaches zero as the mode
velocity approaches zero. Experimentally, however, in all
plasmas in which the dominant mode amplitude remains
large throughout the deceleration, all of the dominantm51
modes lock~to within the noise level of the mode velocity
measurement!. This locking can occur due, e.g., to the finite
resonant error field. When the mode velocity is near zero,
very little braking torque is required to slow the plasma to
the point where the mode rotation is halted completely. In the
time-dependent modeling described in this paper, the final
asymptotic mode velocity is predicted to be quite small,
about 100 000 times smaller than the initial velocity. Hence,
locking due to an error field would not be surprising.

VI. SUMMARY AND DISCUSSION

We have described here a fully quantitative, dynamical
test of a theory-based model of tearing mode braking due to
eddy currents induced in a conducting shell. The model was
applied to braking data from MST plasmas with different
fuel isotopes, magnetic equilibria, initial mode rotation ve-
locities, and mode growth rates. The global momentum con-
finement time is the single adjustable parameter in the model
and was adjusted such that the theoretical and experimental
braking curves in each plasma coincide at locking. That the
theoretical curves overlay the experimental curves quite well
is one indication that the model works well for these experi-
mental data. Another indication is the good agreement be-
tween the model-required and experimental global momen-
tum confinement times.

Consistent with the assumption of viscous coupling be-
tween the island plasma and bulk plasma, we have shown
that the bulk plasma and the single large mode decelerate on
the same time scale. We have also shown that, not surpris-
ingly, the other core-resonant tearing modes also decelerate
on this time scale. We have thus shown clear examples of
braking due to eddy currents, and in the process, we have
also determined the primary cause of the mode deceleration
in MST QSH plasmas. This claim is strengthened by the fact
that we have ruled out in these plasmas the influence of
other, previously established, causes of mode deceleration
and locking in MST.

The work described in this paper has several implica-
tions for the RFP. First, it bolsters confidence that the time-
independent theory published earlier9 and the time-
dependent extension described here are useful in describing
mode deceleration and locking under certain circumstances.
Publication of the time-independent theory was motivated
primarily by the almost complete lack of mode rotation in
the RFX RFP. However, given the lack of mode rotation,
comparison between theory and experiment was problematic.

FIG. 12. For the plasma equilibrium and modeled momentum confinement
time ~1 ms! for the plasma in Fig. 10~a!, model-predicted braking curves
assuming different mode growth rates, starting with the experimental growth
rate~31.0! and dividing by successive powers of 10, working from right to
left.
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The natural~initial! mode rotation velocity~in the absence of
braking torques! had to be estimated based in part on rotation
rates in MST, and it was not possible to observe dynamic
mode deceleration. The result in the present paper, particu-
larly with the correction to the time-independent braking
curve described for RFX, supports the deduction in the ear-
lier paper that eddy currents play a dominant role in prevent-
ing mode rotation in that device. The work in this paper also
bolsters confidence in the recent modeling39 of the eddy-
current braking torque in the rebuilt RFX and the recently
commissioned T2R40 RFP devices.

QSH plasmas in which a single mode grows to and re-
mains at large amplitude are viewed as possible precursors to
as yet theoretical plasmas in which the dominant mode
grows larger still, and the core-resonantm51 mode spec-
trum is comprised of only one mode.41 Such single-helicity
plasmas could provide another avenue for substantially im-
proved RFP fusion performance. However, even without
modeling, it is clear that the potential for mode braking and
locking will be an issue for these plasmas. Techniques to
impart momentum to the plasma, such as toroidal neutral
beam injection or a rotating external magnetic perturbation,
may be needed to maintain plasma rotation. The latter tech-
nique was already successfully applied in RFX.42

It is also worth mentioning one other observation regard-
ing modeling of RFP mode rotation in the presence of eddy
currents.9,39,43 This modeling has been done assuming only
one resonantm51 mode. In resistive-shell devices, in par-
ticular, the mode amplitude predicted to drive a substantial
braking torque is quite small, with a normalized poloidal
fluctuation amplitude!1%. It is not uncommon in any RFP
for the typically broad spectrum of core-resonantm51
modes to reach this amplitude. This means that substantial
braking torque due to eddy currents could be exerted at mul-
tiple resonant surfaces in these devices, making deceleration
and locking due to eddy currents all the more probable.

This work also has implications for the tokamak. While
it certainly does not further prove or disprove the importance
of eddy currents in the tokamak, it does show that braking
due to eddy currents is possible, and it bolsters confidence in
the general model. This work also highlights the importance
of the bulk plasma’s viscous response, which was not in-
cluded in early models for the tokamak or RFP.
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